题目内容

如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.

(1)求该抛物线的解析式;

(2)当动点P运动到何处时,BP2=BD•BC;

(3)当△PCD的面积最大时,求点P的坐标.

(1);(2)(,0);(3)(1,0) 【解析】 试题分析:(1)由抛物线y=ax2+bx﹣4过点A(4,0)、B(﹣2,0)根据待定系数法求解即可; (2)设点P运动到点(x,0)时,有BP2=BD•BC,在中,令x=0时,则y=﹣4,即可求得点C的坐标,由PD∥AC可得△BPD∽△BAC,再根据相似三角形的性质求解即可; (3)由△BPD∽△BAC,根据相似三角形的性...
练习册系列答案
相关题目

为了解青少年形体情况,现随机抽查了若干名初中学生坐姿、站姿、走姿的好坏情况(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:

(1)求这次被抽查形体测评的学生一共有多少人?

(2)求在被调查的学生中三姿良好的学生人数,并将条形统计图补充完整;

(3)若全市有5万名初中生,那么估计全市初中生中,坐姿和站姿不良的学生共有多少人?

【答案】(1)500名;(2)75名;(3)2.5万

【解析】试题分析:(1)用类型人数除以所占百分比就是总人数.(2)用总人数乘以15%.

(3) 坐姿和站姿不良的学生的学生的百分比乘以总人数.

试题解析:

(1)【解析】
100÷20%=500(名),

答:这次被抽查形体测评的学生一共是500名;

(2)【解析】
三姿良好的学生人数:500×15%=75名,

补全统计图如图所示;

(3)【解析】
5万×(20%+30%)=2.5万,

答:全市初中生中,坐姿和站姿不良的学生有2.5万人.

【题型】解答题
【结束】
24

如图,矩形ABCD中,P为AD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PE与CD相交于点O,且OE=OD.

(1)求证:PE=DH;

(2)若AB=10,BC=8,求DP的长.

(1)见解析;(2). 【解析】试题分析:(1) 先证明△DOP≌△EOH,再利用等量代换得到PE=DH. (2) 设DP=x, Rt△BCH中,先用 x表示三角形三边,利用勾股定理列式解方程. 试题解析: (1)【解析】 证明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH, ∴△DOP≌△EOH, ∴OP=OH, ∴PO+OE=OH+OD, ...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网