题目内容


如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.

(1)求∠ACB的度数;

(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.


       (1)证明:在△AEB和△DEC中

∴△AEB≌△DEC(ASA),

∴EB=EC,

又∵BC=CE,

∴BE=CE=BC,

∴△EBC为等边三角形,

∴∠ACB=60°;

(2)解:∵OF⊥AC,

∴AF=CF,

∵△EBC为等边三角形,

∴∠GEF=60°,

∴∠EGF=30°,

∵EG=2,

∴EF=1,

又∵AE=ED=3,

∴CF=AF=4,

∴AC=8,EC=5,

∴BC=5,

作BM⊥AC于点M,∵∠BCM=60°,

∴∠MBC=30°,

∴CM=,BM==

∴AM=AC﹣CM=

∴AB==7.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网