题目内容
如图,以Rt△ABC的边AB为直径的⊙O交斜边AC于点D,点F为BC上一点,AF交⊙O于点E,且∠C=∠BAF.
(1)求证:DE∥AB;
(2)若⊙O的半径为5,AE=2AD,求DE的长.
∵AB为直径,
∴DB⊥AC,
∵△ABC为直角三角形,
∴∠C=∠ABD=∠DEA,
又∵∠C=∠BAF,
∴∠BAF=∠DEA,
∴DE∥AB;
(2)解:连BE,
∵DE∥AB,
∴∠BAE=∠AED,
∴AD=BE,
在Rt△ABD与Rt△BAE中,
∵
∴Rt△ABD≌Rt△BAE(HL),
∴BD=AE=2AD,
设AD=x,则BD=2x,
在Rt△ABD中,x2+(2x)2=102,
∴AD=2
过D作DM⊥AB,过O作ON⊥ED,
∴
∴DM=
连OD,在Rt△OND中,
∵DN=
∴ED=2DN=6.
分析:(1)连DB,根据AB为直径可知DB⊥AC,由于△ABC为直角三角形,所以∠C=∠ABD=∠DEA,再根据∠C=∠BAF可知∠BAF=∠DEA,故可得出结论;
(2)连BE,由(1)知DE∥AB,故可得出AD=BE,由全等三角形的判定定理得出Rt△ABD≌Rt△BAE,所以BD=AE=2AD,设AD=x,则BD=2x,在Rt△ABD中根据勾股定理可求出AD,BD的长,过D作DM⊥AB,过O作ON⊥ED,由
点评:本题考查的是圆周角角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
练习册系列答案
相关题目