题目内容

10.下列能确定△ABC为等腰三角形的是(  )
A.∠A=50°、∠B=80°B.∠A=42°、∠B=48°
C.∠A=2∠B=70°D.AB=4、BC=5,周长为15

分析 A、由∠A=50°、∠B=80°,利用三角形内角和定理,可求得∠C的度数,继而可得∠A=∠C,则可判定△ABC为等腰三角形;
B、由∠A=42°、∠B=48°,利用三角形内角和定理,可求得∠C的度数,则可判定△ABC不是等腰三角形;
C、由∠A=2∠B=70°,利用三角形内角和定理,可求得∠C的度数,则可判定△ABC不是等腰三角形;
C、由AB=4、BC=5,周长为15,可求得第三边长AC的长,继而可判定△ABC不是等腰三角形.

解答 解:A、∵∠A=50°、∠B=80°,
∴∠C=180°-∠A-∠B=50°,
∴∠A=∠C,
∴△ABC为等腰三角形;
故本选项能确定△ABC为等腰三角形;
B、∵∠A=42°、∠B=48°,
∴∠C=180°-∠A-∠B=90°,
∴∠A≠∠B≠∠C,
∴△ABC不是等腰三角形;
故本选项能确定△ABC不是等腰三角形;
C、∵∠A=2∠B=70°,
∴∠B=35°,
∴∠C=180°-∠A-∠B=75°,
∴∠A≠∠B≠∠C,
∴△ABC不是等腰三角形;
故本选项能确定△ABC不是等腰三角形;
D、∵AB=4、BC=5,周长为15,
∴AC=15-4-5=6,
∴AB≠BC≠AC,
∴△ABC不是等腰三角形;
故本选项能确定△ABC不是等腰三角形.
故选A.

点评 此题考查了等腰三角形的判定以及三角形内角和定理.注意掌握等角对等边定理的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网