题目内容
已知:如图2419,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
的长.
![]()
(1)证明:如图D93,连接OC,
![]()
图D93
∵EF是过点C的⊙O的切线,
∴OC⊥EF.
又∵AD⊥EF,
∴OC∥AD.∴∠OCA=∠CAD.
又∵OA=OC,
∴∠OCA=∠BAC.∴∠BAC=∠CAD.
(2)解:∵OB=OC,∴∠B=∠OCB=30°.
又∵∠AOC是△BOC的外角,
∴∠AOC=∠B+∠OCB=60°.
∵AB=12,∴半径OA=
AB=6.
∴
的长为l=
=2π.
练习册系列答案
相关题目