题目内容
如图,△ABC中,∠BAC=90°,AC=2,AB=
,△ACD是等边三角形.![]()
(1)求∠ABC的度数.
(2)以点A为中心,把△ABD顺时针旋转60°,画出旋转后的图形.
(3)求BD的长度.
解:(1)根据勾股定理求得BC=4,在 Rt△ABC中AC=2∴
°;
(2)如图![]()
(3)连接BE.
由(2)知:△ACE≌△ADB
∴AE=AB,∠BAE=60°,BD=EC
∴BE= AE=AB=
,∠EBA=60°
∴∠EBC=90°
又BC=2AC=4
∴Rt△EBC中,EC=![]()
∴![]()
方法2:过点D作DF⊥BC,交BC延长线于点F,
则求得EF=
BF =5,
∴![]()
方法3:过点D作DG⊥BA,交BA延长线于点G,按照方法2给分。
解析
练习册系列答案
相关题目