题目内容
计算(| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2003 |
| 1 |
| 2 |
| 1 |
| 2002 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2003 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2002 |
分析:设
+
+…+
=a,
+…+
=b,则利用a,b表示出已知的式子,进行化简,即可求值.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2003 |
| 1 |
| 2 |
| 1 |
| 2002 |
解答:解:设
+
+…+
=a,
+…+
=b,
则原式=a(1+b)-(1+a)•b
=a+ab-b-ab
=a-b
=
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2003 |
| 1 |
| 2 |
| 1 |
| 2002 |
则原式=a(1+b)-(1+a)•b
=a+ab-b-ab
=a-b
=
| 1 |
| 2003 |
点评:本题考查了代数式得求值,关键是理解已知的式子中,各个部分的关系.
练习册系列答案
相关题目