题目内容
分析:连接BC,则∠ABC=90°,且∠A=35°,∠OCB=55°,又△BCO为等腰三角形,即有∠COB=70°,即可求∠D=90°-∠COB=20°.
解答:解:连接BC,
∴∠OCD=90°,
∴∠OCB=55°,
在△OCB中,OB=OC;
即有∠COB=70°;
∴∠D=90°-∠COB=20°.
故选A;

∴∠OCD=90°,
∴∠OCB=55°,
在△OCB中,OB=OC;
即有∠COB=70°;
∴∠D=90°-∠COB=20°.
故选A;
点评:本题利用了切线的概念和性质的应用以及三角形内角和为180°的知识点;在直角三角形中,同角或等角的余角相等;
练习册系列答案
相关题目