题目内容
【题目】某相宜本草护肤品专柜计划在春节前夕促销甲、乙两款护肤品,根据市场调研,发现如下两种信息:
信息一:销售甲款护肤品所获利润y(元)与销售量x(件)之间存在二次函数关系y=ax2+bx.在x=10时,y=140;当x=30时,y=360.
信息二:销售乙款护肤品所获利润y(元)与销售量x(件)之间存在正比例函数关系y=3x.请根据以上信息,解答下列问题;
(1)求信息一中二次函数的表达式;
(2)该相宜本草护肤品专柜计划在春节前夕促销甲、乙两款护肤品共100件,请设计一个营销方案,使销售甲、乙两款护肤品获得的利润之和最大,并求出最大利润.
【答案】(1)y=-0.1x2+15x;(2)购进甲产品60件,购进乙产品40件,最大利润是660元
【解析】试题分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;
(2)设购进甲产品m件,则购进乙产品(10-m)件,销售甲、乙两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和,列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.
试题解析:解:(1)∵当x=10时,y=140;当x=30时,y=360,
∴
,解得:a=-0.1,b=15,
∴二次函数解析式为y=-0.1x2+15x;
(2)设购进甲产品m件,则购进乙产品(100-m)件,销售甲、乙两种产品获得的利润之和为W元,则W=-0.1m2+15m+3(100-m)=-0.1m2+12m+300=-0.1(m-60)2+660.
∵-0.1<0,∴当m=60时,W有最大值660元.
答:购进甲产品60件,乙产品40件,可使销售甲、乙两种产品获得的利润之和最大,最大利润是660元.
【题目】在学校组织的“学习强国”阅读知识竞赛中,有901班和902班两个班参加比赛且人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分和70分.年级组长李老师将901班和902班的成绩进行整理并绘制成如下的统计图:
平均数(分) | 中位数(分) | 众数(分) | B级及以上人数 | |
901班 | 87.6 | 90 | 18 | |
902班 | 87.6 | 100 |
(1)在本次竞赛中,902班C级及以上的人数有多少?
(2)请你将表格补充完整: