ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Ò»´Îº¯Êýy=-| 3 |
| 3 |
£¨1£©Çó¡÷ABCµÄÃæ»ý£»
£¨2£©Èç¹ûÔÚµÚ¶þÏóÏÞÄÚÓÐÒ»µãP£¨m£¬
| ||
| 2 |
£¨3£©ÊÇ·ñ´æÔÚʹ¡÷QABÊǵÈÑüÈý½ÇÐβ¢ÇÒÔÚ×ø±êÖáÉϵĵãQ£¿Èô´æÔÚ£¬Çëд³öµãQËùÓпÉÄܵÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÏÈÇó³öA¡¢BÁ½µãµÄ×ø±ê£¬ÔÙÓÉÒ»¸ö½ÇµÈÓÚ30¡ã£¬Çó³öACµÄ³¤£¬´Ó¶ø¼ÆËã³öÃæ»ý£»
£¨2£©¹ýP×÷PD¡ÍxÖᣬ´¹×ãΪD£¬ÏÈÇó³öÌÝÐÎODPBµÄÃæ»ýºÍ¡÷AOBµÄÃæ»ýÖ®ºÍ£¬ÔÙ¼õÈ¥¡÷APDµÄÃæ»ý£¬¼´ÊÇ¡÷APBµÄÃæ»ý£»¸ù¾Ý¡÷APBÓë¡÷ABCÃæ»ýÏàµÈ£¬ÇóµÃmµÄÖµ£»
£¨3£©¼ÙÉè´æÔÚµãQ£¬Ê¹¡÷QABÊǵÈÑüÈý½ÇÐΣ¬Çó³öQµãµÄ×ø±ê¼´¿É£®
£¨2£©¹ýP×÷PD¡ÍxÖᣬ´¹×ãΪD£¬ÏÈÇó³öÌÝÐÎODPBµÄÃæ»ýºÍ¡÷AOBµÄÃæ»ýÖ®ºÍ£¬ÔÙ¼õÈ¥¡÷APDµÄÃæ»ý£¬¼´ÊÇ¡÷APBµÄÃæ»ý£»¸ù¾Ý¡÷APBÓë¡÷ABCÃæ»ýÏàµÈ£¬ÇóµÃmµÄÖµ£»
£¨3£©¼ÙÉè´æÔÚµãQ£¬Ê¹¡÷QABÊǵÈÑüÈý½ÇÐΣ¬Çó³öQµãµÄ×ø±ê¼´¿É£®
½â´ð£º
½â£º
£¨1£©¡ßÒ»´Îº¯ÊýµÄ½âÎöʽΪy=-
x+
º¯ÊýͼÏóÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãA¡¢B£¬
¡àA£¨1£¬0£©£¬B£¨0£¬
£©£¬
¡àAB=2£¬
ÉèAC=x£¬ÔòBC=2x£¬Óɹ´¹É¶¨ÀíµÃ£¬4x2-x2=4£¬
½âµÃx=
£¬S¡÷ABC=
=
£»
£¨2£©¹ýP×÷PD¡ÍxÖᣬ´¹×ãΪD£¬
S¡÷APB=SÌÝÐÎODPB+S¡÷AOB-S¡÷APD=
+
-
(1-m)=-
m+
£¬
-
m+
=
£¬½âµÃm=-
£»
£¨3£©¡ßAB=
=2£¬
¡àµ±AQ=ABʱ£¬µãQ1£¨3£¬0£©£¬Q2£¨-1£¬0£©£¬Q3£¨0£¬-
£©£»
µ±AB=BQʱ£¬µãQ4£¨0£¬
+2£©£¬Q2£¨0£¬
-2£©£¬Q2£¨-1£¬0£©£»
µ±AQ=BQʱ£¬µãQ6£¨0£¬
£©£¬Q2£¨-1£¬0£©£¬
×ÛÉϿɵ㺣¨0£¬
-2£©£¬£¨0£¬
+2£©£¬£¨-1£¬0£©£¨3£¬0£©£¬£¨0£¬-
£©£¬£¨0£¬
£©
£¨1£©¡ßÒ»´Îº¯ÊýµÄ½âÎöʽΪy=-
| 3 |
| 3 |
¡àA£¨1£¬0£©£¬B£¨0£¬
| 3 |
¡àAB=2£¬
ÉèAC=x£¬ÔòBC=2x£¬Óɹ´¹É¶¨ÀíµÃ£¬4x2-x2=4£¬
½âµÃx=
| 2 |
| 3 |
| 3 |
2¡Á
| ||||
| 2 |
2
| ||
| 3 |
£¨2£©¹ýP×÷PD¡ÍxÖᣬ´¹×ãΪD£¬
-(
| ||||||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 4 |
-
| ||
| 2 |
| ||
| 4 |
2
| ||
| 3 |
| 5 |
| 6 |
£¨3£©¡ßAB=
| OA2+OB2 |
¡àµ±AQ=ABʱ£¬µãQ1£¨3£¬0£©£¬Q2£¨-1£¬0£©£¬Q3£¨0£¬-
| 3 |
µ±AB=BQʱ£¬µãQ4£¨0£¬
| 3 |
| 3 |
µ±AQ=BQʱ£¬µãQ6£¨0£¬
| ||
| 3 |
×ÛÉϿɵ㺣¨0£¬
| 3 |
| 3 |
| 3 |
| ||
| 3 |
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÆ½ÃæÖ±½Ç×ø±êϵÖÐͼÐεÄÃæ»ýµÄÇ󷨣®½â´ð´ËÌâµÄ¹Ø¼üÊǸù¾ÝÒ»´Îº¯ÊýµÄÌØµã£¬·Ö±ðÇó³ö¸÷µãµÄ×ø±êÔÙ¼ÆË㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| 2 |
| x |
| A¡¢x£¾1 |
| B¡¢x£¼-2»ò0£¼x£¼1 |
| C¡¢-2£¼x£¼1 |
| D¡¢-2£¼x£¼0»òx£¾1 |