题目内容
| AB |
| a |
| AC |
| b |
| BM |
| MC |
| AM |
| a |
| b |
(2)当
| BM |
| MC |
| AM |
| a |
| b |
(3)当
| AM |
| 4 |
| 7 |
| a |
| 3 |
| 7 |
| b |
| BM |
| MC |
考点:*平面向量
专题:
分析:(1)由
=
,
=
,根据三角形法则即可求得
,又由
=2,即可求得
的值,继而求得答案;
(2)由
=
,
=
,根据三角形法则即可求得
,又由
=m,即可求得
的值,继而求得答案;
(3)根据(2)的结论,可得
=
,继而求得m的值.
| AB |
| a |
| AC |
| b |
| BC |
| BM |
| MC |
| BM |
(2)由
| AB |
| a |
| AC |
| b |
| BC |
| BM |
| MC |
| BM |
(3)根据(2)的结论,可得
| 1 |
| m+1 |
| 4 |
| 7 |
解答:解:(1)∵
=
,
=
,
∴
=
-
=
-
,
∵
=2,
∴
=
=
(
-
)=
-
,
∴
=
+
=
+(
-
)=
+
;
(2)∵
=
,
=
,
∴
=
-
=
-
,
∵
=m,
∴
=
=
(
-
)=
-
,
∴
=
+
=
+(
-
)=
+
;
(3)∵
=
+
,
∴
=
,
解得:m=
,
∴
=
.
故答案为:(1)
+
;(2)
+
;(3)
.
| AB |
| a |
| AC |
| b |
∴
| BC |
| AC |
| AB |
| b |
| a |
∵
| BM |
| MC |
∴
| BM |
| 2 |
| 3 |
| BC |
| 2 |
| 3 |
| b |
| a |
| 2 |
| 3 |
| b |
| 2 |
| 3 |
| a |
∴
| AM |
| AB |
| BM |
| a |
| 2 |
| 3 |
| b |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| a |
| 2 |
| 3 |
| b |
(2)∵
| AB |
| a |
| AC |
| b |
∴
| BC |
| AC |
| AB |
| b |
| a |
∵
| BM |
| MC |
∴
| BM |
| m |
| m+1 |
| BC |
| m |
| m+1 |
| b |
| a |
| m |
| m+1 |
| b |
| m |
| m+1 |
| a |
∴
| AM |
| AB |
| BM |
| a |
| m |
| m+1 |
| b |
| m |
| m+1 |
| a |
| 1 |
| m+1 |
| a |
| m |
| m+1 |
| b |
(3)∵
| AM |
| 4 |
| 7 |
| a |
| 3 |
| 7 |
| b |
∴
| 1 |
| m+1 |
| 4 |
| 7 |
解得:m=
| 3 |
| 4 |
∴
| BM |
| MC |
| 3 |
| 4 |
故答案为:(1)
| 1 |
| 3 |
| a |
| 2 |
| 3 |
| b |
| 1 |
| m+1 |
| a |
| m |
| m+1 |
| b |
| 3 |
| 4 |
点评:此题考查了平面向量的知识.此题难度适中,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.
练习册系列答案
相关题目