题目内容
在等边三角形、矩形、等腰梯形、圆这四个图形中,属于中心对称图形的有_____个.
下列命题中,真命题是( )
A. 一组对边平行,另一组对边相等的四边形一定是等腰梯形
B. 对角线互相垂直的四边形是菱形
C. 顺次连结菱形各边中点所得的四边形是正方形
D. 四个内角均相等的四边形是矩形
如图,△ABC是等边三角形,AD是BC边上的高,E是AC上一点,且AE=AD,则∠AED的度数为___________。
实际问题
某批发商以元/ 的成本价购入了某产品,据市场预测,该产品的销售价(元/ )与保存时间(天)的函数关系为,但保存这批产品平均每天将损耗.另外,批发商每天保存该批产品的费用为元.已知该产品每天的销量不超过,若批发商希望通过这批产品卖出获利元,则批发商应在保存该产品多少天时一次性卖出?
小明的思路及解答
本题的相等关系是:
销售价销量成本价销量保存费用获利.
【解析】设批发商应在保存该产品天时一次性卖出可获利元.
根据上面的相等关系,
得.
解这个方程,得, .
当时, (不合题意,舍去),
当时, .
答:批发商应在保存该产品天时一次性卖出可获利元.
数学老师的批改
数学老师在小明的解答中画了一条横线,并打了一个“”.
你的观点及做法
()请指出小明错误的原因.
()重新给出正确的解答过程.
如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A=________°.
志愿者服务站为指导农民发展种植业进行技术培训,三期共培训95人,其中第一期培训20人,求每期培训人数的平均增长率,设平均增长率为x,根据题意列出的方程为( )
A. 20(1+x)2=95 B. 20(1+x)3=95
C. 20(1+x)+20(1+x)2=95 D. 20(1+x)+20(1+x)2=95﹣20
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本
(1)求每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
已知二次函数y=ax2+bx+c的图象如图,则下列判断正确是( )
A. a<0,b>0,c>0 B. a<0,b<0,c<0 C. a<0,b<0,c>0 D. a>0,b<0,c>0
如图,小强作出边长为1的第1个等边△A1B1C1,计算器面积为S1,然后分别取△A1B1C1三边的中点A2、B2、C1,作出第2个等边△A2B2C2,计算其面积为S2,用同样的方法,作出第3个等边△A3B3C3,计算其面积为S3,按此规律进行下去,…,由此可得,第20个等边△A20B20C20的面积S20=________.