题目内容

精英家教网如图,三角板ABC的两直角边AC,BC的长分别是40cm和30cm,点G在斜边AB上,且BG=30cm,将这个三角板以G为中心按逆时针旋转90°,至△A′B′C′的位置,那么旋转后两个三角板重叠部分(四边形EFGD)的面积为
 
cm2
分析:把所求重叠部分面积看作△A′FG与△A′DE的面积差,并且这两个三角形都与△ABC相似,根据勾股定理求对应边的长,根据相似三角形的面积比等于相似比的平方求面积即可.
解答:解:由勾股定理得AB=
AC2+BC2
=
402+302
=50,
又∵BG=30,
∴AG=AB-BG=20,
由△ADG∽△ABC得,
DG
BC
=
AG
AC
=
AD
AB
,即
DG
30
=
20
40
=
AD
50

解得DG=15,AD=25,
A′D=A′G-DG=AG-GD=20-15=5,
由△A′DE∽△A′B′C′,可知
A′D
A′B′
=
5
50
=
1
10

由△A′GF∽△A′C′B′,可知
A′G
A′C′
20
40
=
1
2

根据相似三角形面积比等于相似比的平方,可知
S四边形EFGD=S△A′FG-S△A′DE=
1
4
S△A′B′C′-
1
100
S△A′B′C′=
24
100
×
1
2
×40×30=144cm2
点评:本题考查了旋转图形的面积不变,勾股定理、相似三角形的性质的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网