题目内容
分式方程+=1的解为 。
某天的最高气温是11℃,最低气温是﹣1℃,则这一天的最高气温与最低气温的差是( )
A.2℃ B.﹣2℃ C.12℃ D.﹣12℃
如图:在□ABCD中,AE⊥BC于E,AF⊥CD于F。若AE=4,AF=6,且□ABCD的周长为40,则ABCD的面积为
为了提倡“绿色”出行,顺义区启动了公租自行车项目,为了解我区居民公租自行车的使用情况,某校的社团把使用情况分为A(经常租用)、B(偶尔租用)、C(不使用)三种情况.先后在2015年1月底和3月底做了两次调查,并根据调查结果绘制成了如下两幅不完整的统计图:
根据以上信息解答下列问题:
(1)在扇形统计图中,A(经常租用)所占的百分比是 ;
(2)求两次共抽样调查了多少人;并补全折线统计图;
(3)根据调查的结果,请你谈谈从2015年1月底到2015年3月底,我区居民使用公租自行车的变化情况.
如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,求图中阴影部分的面是 .
如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
A.2 B.2 C.3 D.
我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 , ;
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA、OB为勾股边且有对角线相等的勾股四边形OAMB的顶点M的坐标.
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到ADBE,连接AD、DC,∠DCB=30°.求证:DC+BC=AC,即四边形ABCD是勾股四边形.
(4)如图,将△ABC绕顶点B按顺时针方向旋转(0°<a<90°),得到ADBE,连接AD、DC,则∠DCB= °,四边形ABCD是勾股四边形.
已知平行四边形ABCD中,∠B=5∠A,则∠D= .
已知am=8,an=32.求
(1)am+n的值;
(2)a3m-2n值.