题目内容


如图,正方形ABCD中,G是BC中点,DE⊥AG于E,BF⊥AG于F,GN∥DE,M是BC延长线上一点。

(1)求证:△ABF≌△DAE

(2)尺规作图:作∠DCM的平分线,交GN于点H(保留作图痕迹,不写作法和证明),试证明GH=AG


解:∵ 四边形ABCD是正方形

AB=BC=CD=DA     

DAB=∠ABC=90° 

∴ ∠DAE+∠GAB=90° 

DEAG   BFAG

∴ ∠AED=∠BFA=90°

DAE +∠ADE=90°

    ∴ ∠GAB =∠ADE   

在△ABF和△DAE中

    ∴ △ABF≌△DAE   

(2)作图略   方法1:作HI⊥BM于点I 

GNDE

∴ ∠AGH=∠AED=90°

∴ ∠AGB+HGI=90°

∵ HI⊥BM

∴ ∠GHI+HGI=90°

∴ ∠AGB =GHI 

GBC中点

tanAGB=

tanGHI= tanAGB=

∴ GI=2HI     

CH平分∠DCM

∴ ∠HCI=

CI=HI

CI=CG=BG=HI   

在△ABG和△GIH

∴ △ABG≌△GIH   

AG=GH   

方法2: 作AB中点P,连结GP  

PG分别是ABBC中点 且AB=BC

AP=BP=BG=CG    ∴ ∠BPG=45°

CH平分∠DCM

∴ ∠HCM=

∴ ∠APG=∠HCG=135

GNDE

∴ ∠AGH=∠AED=90°

∴ ∠AGB+HGM=90°

∵ ∠BAG+∠AGB=90°

∴ ∠BAG =∠HGM   

在△AGP和△GHC

∴ △AGP≌△GHC  

AG=GH    


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网