题目内容
已知:Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,点F为边AB的中点,EF∥CD交BC于点E,则下列结论:①AC=
其中一定成立的是( )
A.①②④
B.③④
C.①②③
D.①②
【答案】分析:过A作AM∥EF交BC延长线于M,求出AM=2EF,由勾股定理求出AM=
AC,得出2EF=
AC,即可判断①;根据ME=BE,AC=CM求出BC-AC=2EM-MC=2EF,即可判断②;过F作FN⊥BC于N,由勾股定理求出EF=
EN=
FN,即可判断③;过D作DQ⊥AC于Q,证△AQD∽△ACB,推出
=
,推出
=
,得出
=
,证△BEF∽△BCD,推出
=
,即可判断④.
解答:解:
过A作AM∥EF交BC延长线于M,
∵EF∥CD,
∴∠BEF=∠M=∠BCD,
∵∠ACB=90°,CD平分∠ACB,
∴∠BCD=45°,
∴∠M=∠BEF=45°,
∵∠ACM=90°,
∴∠CAM=∠M=45°,
∴MC=AC,
∵AM∥EF,F为AB中点,
∴E为BM中点,
∴AM=2EF,
由勾股定理得:AM=
AC,
∴2EF=
AC,
AC=
EF,∴①正确;
∵ME=BE,AC=CM,
∴BC-AC=2EM-MC=2EF,∴②正确;
如图,过F作FN⊥BC于N,

∵∠BEF=45°,
∴∠NEF=∠NFE=45°,
∴EN=FN,
由勾股定理得:EF=
EN=
FN,根据已知不能推出CE=EN,∴③错误;
如图

过D作DQ⊥AC于Q,
则∠AQD=∠CQD=∠ACB=90°,DQ∥BC,
∴△AQD∽△ACB,
∴
=
,
∵∠CQD=90°,∠ACD=45°,
∴∠ACD=∠CDQ=45°,
∴CQ=DQ,由勾股定理得:DQ=
CD,
∴
=
,
∴
=
,
=
,
∵EF∥CD,
∴△BEF∽△BCD,
∴
=
,
∴
=
,
∴EF•AB=
AD•BE,∴④正确;
故选A.
点评:本题考查了相似三角形的性质和判定,等腰直角三角形,勾股定理的应用,注意:相似三角形的对应边的比相等,有两个角对应相等的两三角形相似.
解答:解:
过A作AM∥EF交BC延长线于M,
∵EF∥CD,
∴∠BEF=∠M=∠BCD,
∵∠ACB=90°,CD平分∠ACB,
∴∠BCD=45°,
∴∠M=∠BEF=45°,
∵∠ACM=90°,
∴∠CAM=∠M=45°,
∴MC=AC,
∵AM∥EF,F为AB中点,
∴E为BM中点,
∴AM=2EF,
由勾股定理得:AM=
∴2EF=
AC=
∵ME=BE,AC=CM,
∴BC-AC=2EM-MC=2EF,∴②正确;
如图,过F作FN⊥BC于N,
∵∠BEF=45°,
∴∠NEF=∠NFE=45°,
∴EN=FN,
由勾股定理得:EF=
如图
过D作DQ⊥AC于Q,
则∠AQD=∠CQD=∠ACB=90°,DQ∥BC,
∴△AQD∽△ACB,
∴
∵∠CQD=90°,∠ACD=45°,
∴∠ACD=∠CDQ=45°,
∴CQ=DQ,由勾股定理得:DQ=
∴
∴
∵EF∥CD,
∴△BEF∽△BCD,
∴
∴
∴EF•AB=
故选A.
点评:本题考查了相似三角形的性质和判定,等腰直角三角形,勾股定理的应用,注意:相似三角形的对应边的比相等,有两个角对应相等的两三角形相似.
练习册系列答案
相关题目
已知在Rt△ABC中,∠C=90°,sinA
,则tanB的值为( )
| ||
| 2 |
| A、1 | ||||
B、
| ||||
C、
| ||||
D、
|