题目内容
的平方根是( ).
A.9 B.±9 C.3 D.±3
如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.
(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.
函数中, 自变量的取值范围是( )
A. x≥-2 B. x>-2 C. x≤-2 D. x>2
在一次函数y=-x+3的图象上取一点P,作PA⊥x轴,垂足为A,作PB⊥y轴,垂足为B,且矩形OAPB的面积为,则这样的点P共有( )
A. 4个 B. 3个 C. 2个 D. 1个
如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )
A. 80° B. 90° C. 100° D. 102°
为积极响应市政府“五城同创”号召,某街道拟计划购买A、B两种树苗共100棵绿化某闲置空地,要求种植B种树苗的棵数不少于种植A种树苗棵数的3倍,且种植B种树苗的棵数不多于种植A种树苗棵数的4倍,已知A种树苗每棵40元,B种树苗每棵80元.
(1)设购买A种树苗x棵,购买A、B两种树苗的总费用为y元,请写出y与x之间的函数关系式;
(2)从节约资金的角度考虑,你认为应如何购买这两种树苗?
下表给出的是关于某个一次函数的自变量x及其对应的函数值y的若干信息:
x
…
-1
1
2
y
m
n
请你根据表格中的相关数据计算:m+2n=______.
某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:AP=CQ;
(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;
(3)在(2)的条件下,若AP=1,求PE的长.
菱形和矩形一定都具有的性质是( )
A. 对角线相等 B. 对角线互相垂直
C. 对角线互相平分且相等 D. 对角线互相平分