题目内容

如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为

A、2        B、2.5或3.5       C、3.5或4.5         D、2或3.5或4.5

 

【答案】

D

【解析】

试题分析:∵Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=2BC=4(cm)。

∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,

∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm),

若∠DBE=90°,∵∠ABC=60°,∴∠BDE=30°。∴BE=BD=(cm)。

当A→B时, t=4﹣0.5=3.5;当B→A时,t=4+0.5=4.5。

若∠EDB=90°时,∵∠ABC=60°,∴∠BED=30°。∴BE=2BD=2(cm)。

当A→B时,∴t=4﹣2=2;当B→A时,t=4+2=6(舍去)。

综上可得:t的值为2或3.5或4.5。故选D。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网