题目内容
从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.8cm,下身长约94cm,她要穿约_____cm的高跟鞋才能达到黄金比的美感效果(精确到1cm).
如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为何45°,则这个建筑物的高度CD= 米(结果可保留根号)
如图,在平面直角坐标系中,抛物线y=﹣x2+ 与y轴相交于点A,点B与点O关于点A对称.
(1)填空:点B的坐标为________;
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由.
二次函数y=-2(x+1)2+3的图象的顶点坐标是( )
A. (1,3) B. (-1,3) C. (1,-3) D. (-1,-3)
如图.在平面直角坐标系内,△ABC三个顶点的坐标分别为A(1,﹣2),B(4,﹣1),C(3,﹣3)(正方形网格中,每个小正方形的边长都是1个单位长度).
(1)作出△ABC向左平移5个单位长度,再向下平移3个单位长度得到的△A1B1C1;
(2)以坐标原点O为位似中心,相似比为2,在第二象限内将△ABC放大,放大后得到△A2B2C2作出△A2B2C2;
(3)以坐标原点O为旋转中心,将△ABC逆时针旋转90°,得到△A3B3C3,作出△A3B3C3,并求线段AC扫过的面积.
如图,在△ABC中AC=BC,∠ACB=90°,以BC为直径作⊙O,连接OA,交⊙O于点D,过D点作⊙O的切线交AC于点E,连接B、D并延长交AC于点F.则下列结论错误的是( )
A. △ADE∽△ACO B. △AOC∽△BFC
C. △DEF∽△DOC D. CD2=DF•DB
如果△ABC∽△DEF,其相似比为3:1,且△ABC的周长为27,则△DEF的周长为( )
A. 9 B. 18 C. 27 D. 81
如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若,AE=4,则EC等于_____.
周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.
已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.