题目内容
【题目】如图,△ABC是等腰三角形,AB=AC,分别以两腰为边向△ABC外作等边三角形ADB和等边三角形ACE. 若∠DAE=∠DBC,求∠BAC的度数.
![]()
【答案】∠BAC的度数为20°
【解析】
根据等边三角形各内角为60°,等腰三角形底角相等,三角形内角和为180°、∠DAE=∠DBC即可120°+∠BAC=60°+∠ABC,即可解题.
解:∵△ADB和△ACE是等边三角形,
∴∠DAB=∠DBA=∠CAE=60°,
∴∠DAE=60°+∠BAC+60°=120°+∠BAC,
∴∠DBC=60°+∠ABC,
又∵∠DAE=∠DBC,
∴120°+∠BAC=60°+∠ABC,
即∠ABC=60°+∠BAC.
∵△ABC是等腰三角形,
∴∠ABC=∠ACB=60°+∠BAC.
设∠BAC的度数为x,
则x+2(x+60°)=180°,
解得x=20°,
∴∠BAC的度数为20°.
练习册系列答案
相关题目
【题目】某文具店准备购进A、B两种型号的书包共50个进行销售,两种书包的进价、售价如下表所示:
书包型号 | 进价(元/个) | 售价(元/个) |
A型 | 200 | 300 |
B型 | 100 | 150 |
购进这50个书包的总费用不超过7300元,且购进B型书包的个数不大于A型书包个数的
.
(1)该文具店有哪几种进货方案?
(2)若该文具店购进的50个书包全部售完,则该文具店采用哪种进货方案,才能获得最大利润?最大利润是多少?(利润=售价﹣进价)