题目内容
如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:
(1)△AEF≌△CEB;
(2)AF=2CD.
若 a,b为两个连续的正整数,且,则a+b= .
如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?
如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )
A.2 B.3 C.4 D.5
小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).
(1)A点所表示的实际意义是 ;= ;
(2)求出AB所在直线的函数关系式;
(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?
如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3、0)点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,此时点C的坐标为 .
一次函数y=﹣2x+1的图象一定不经过第 象限.
过直线l外一点P用直尺和圆规作直线l的垂线的方法是:以点P为圆心,大于点P到直线l的距离长为半径画弧,交直线l于点A、B;分别以A、B为圆心,大于AB长为半径画弧,两弧交于点C.连结PC,则PC⊥AB.
请根据上述作图方法,用数学表达式补充完整下面的已知条件,并给出证明.
已知:如图,点P、C在直线l的两侧,点A、B在直线l上,且 , .求证:PC⊥AB.
某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.
A.140 B.120 C.160 D.100