题目内容
一个正多边形的内角和为540°,则这个正多边形的每一个角等于( )
A. 108° B. 90° C. 72° D. 60°
某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发 现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:
(1)求y与x之间的函数关系式;
(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;
(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?
用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( )
A. SAS B. AAS C. ASA D. SSS
如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若B(﹣,y1),C(﹣,y2)为图象上的两点,则y1<y2;③2a﹣b=0;④<0,其中正确的结论是_____.
已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是 ( )
A.30° B.60° C.150° D.30°或150°
已知关于x的方程.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.
如图,某中学准备用长为20m的篱笆围成一个长方形生物园ABCD饲养小兔,生物园的一面靠墙(围墙MN最长可利用15m)试设计一种围法,使生物园的面积为32m2.
如图,AC⊥BD于点P,AP=CP,增加下列一个条件:①BP=DP;②AB=CD;③∠A=∠C.其中能判定△ABP≌△CDP的条件有 ( )
A. 0个 B. 1个 C. 2个 D. 3个