题目内容
已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.
求证:AD=CE.
![]()
证明:作DG∥BC交AC于G,如图所示:
则∠DGF=∠ECF,
在△DFG和△EFC中,
,
∴△DFG≌△EFC(AAS),
∴GD=CE,
∵△ABC是等边三角形,
∴∠A=∠B=∠ACB=60°,
∵DG∥BC,
∴∠ADG=∠B,∠AGD=∠ACB,
∴∠A=∠ADG=∠AGD,
∴△ADG是等边三角形,
∴AD=GD,
∴AD=CE.
![]()
练习册系列答案
相关题目