题目内容
如图,有两棵树,一棵高11米,另一棵高6米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 米.
整数K<5,△ABC的三边长均满足方程x2-3x+8=0,△ABC的周长是( )
A.5 B、8 C 、9 D、10
(本小题满分6分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.
(1)该顾客至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.
下列运算正确的是( )
A、
B、
C、
D、
(满分4分)已知是关于的方程的唯一解,且,求的值.
已知二次函数,当取不同的值时,其图象构成一个“抛物线系”,如图中的实线型抛物线分别是取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),则这条虚线型抛物线的解析式是( )
A. B.
C. D.
的立方根是( )
A. B. C. D.
若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是( )
A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b
如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4cm,则△ABD的周长是 .