题目内容
如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是( )
A. 2 B. 3 C. D. 4
如图,∠1=100°,∠2=145°,那么∠3=( ).
A. 55° B. 65° C. 75° D. 85°
一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为( )
A. B. C. D.
计算:(1)﹣;(2)﹣a﹣1.
在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球________个.
如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.
(1)当t= 时,△PQR的边QR经过点B;
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.
已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是_____,
证明你的结论.
(2)当四边形ABCD的对角线满足_____条件时,四边形EFGH是矩形;
(3)当四边形ABCD的对角线满足_____条件时,四边形EFGH是菱形;
(4)你学过的哪种特殊四边形的中点四边形是矩形?_____;
(5)你学过的哪种特殊四边形的中点四边形是菱形?_____;
(6)你学过的哪种特殊四边形的中点四边形是正方形?_____.
如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
A. 12 B. 16 C. 20 D. 24
如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是_____米.