题目内容
【题目】如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是 cm.![]()
【答案】8
【解析】解:设AH=a,则DH=AD﹣AH=8﹣a,
在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,
∴EH2=AE2+AH2,即(8﹣a)2=42+a2,
解得:a=3.
∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,
∴∠BFE=∠AEH.
又∵∠EAH=∠FBE=90°,
∴△EBF∽△HAE,
∴
=
=
=
.
∵C△HAE=AE+EH+AH=AE+AD=12,
∴C△EBF=
C△HAE=8.
故答案为:8.
设AH=a,则DH=AD﹣AH=8﹣a,利用勾股定理求出a的值,再根据同角的余角相等得∠BFE=∠AEH,从而证出△EBF∽△HAE,根据相似三角形的周长比等于相似比(即对应边的比)即可得出结论.
练习册系列答案
相关题目