题目内容
如图,已知R t△ABC,∠ABC=90°,以直角边AB为直径作O,交斜边AC于点D,连接BD.(1)取BC的中点E,连接ED,试证明ED与⊙O相切.
(2)若AD=3,BD=4,求边BC的长.
【答案】分析:(1)连接OD.欲证ED与⊙O相切,只需证明OD⊥DE;
(2)通过相似三角形△BDC∽△ADB的对应边成比例知
=
,由此可以求得线段BC的长度.
解答:
(1)证明:连接OD.
∵OD=OB(⊙O的半径),
∴∠OBD=∠BDO(等边对等角);
∵AB是直径(已知),
∴∠ADB=90°(直径所对的圆周角是直角),
∴∠ADB=∠BDC=90°;
在Rt△BDC中,E是BC的中点,
∴BE=CE=DE(直角三角形斜边上的中线等于斜边的一半),
∴∠DBE=∠BDE(等边对等角);
又∵∠ABC=∠OBD+∠DBE=90°,
∴∠ODE=∠BDO+∠BDE=90°(等量代换);
∵点D在⊙O上,
∴ED与⊙O相切;
(2)在Rt△ABD中,∵AD=3,BD=4,
∴AB=5(勾股定理);
在Rt△BDC和Rt△ADB中,∠ADB=∠BDC=90°,∠ABC=90°,
∴∠ABD=∠BCD,
∴△BDC∽△ADB,
∴
=
.即
=
,
∴BC=
.
点评:本题考查了相似三角形的判定与性质、切线的判定与性质.圆心到一条直线的距离等于该圆的半径,则该直线就是圆的一条切线.
(2)通过相似三角形△BDC∽△ADB的对应边成比例知
解答:
∵OD=OB(⊙O的半径),
∴∠OBD=∠BDO(等边对等角);
∵AB是直径(已知),
∴∠ADB=90°(直径所对的圆周角是直角),
∴∠ADB=∠BDC=90°;
在Rt△BDC中,E是BC的中点,
∴BE=CE=DE(直角三角形斜边上的中线等于斜边的一半),
∴∠DBE=∠BDE(等边对等角);
又∵∠ABC=∠OBD+∠DBE=90°,
∴∠ODE=∠BDO+∠BDE=90°(等量代换);
∵点D在⊙O上,
∴ED与⊙O相切;
(2)在Rt△ABD中,∵AD=3,BD=4,
∴AB=5(勾股定理);
在Rt△BDC和Rt△ADB中,∠ADB=∠BDC=90°,∠ABC=90°,
∴∠ABD=∠BCD,
∴△BDC∽△ADB,
∴
∴BC=
点评:本题考查了相似三角形的判定与性质、切线的判定与性质.圆心到一条直线的距离等于该圆的半径,则该直线就是圆的一条切线.
练习册系列答案
相关题目
A、
| ||
B、
| ||
C、
| ||
D、
|