题目内容
分解因式:= __________.
估计的大小应在( )
A. 7与8之间 B. 8与9之间 C. 9与10之间 D. 11与12之间
已知点 P(0,a)在 y 轴的负半轴上,则点 Q(-a2-1,-a+1)在第_______象限;
如图,一次函数的图像交x轴、y轴于A、B两点
(1)直接写出A、B两点的坐标:____________;______________。
(2)P为线段AB上一点,PQ//y轴交x轴于C,交双曲线于Q且四边形OBPQ为平行四边形,△OCQ的面积为3
① 求k的值和P点坐标;
② 将△OBP绕点O逆时针旋转一周,在整个旋转过程中,P点能否落在双曲线上?请说明理由.
如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,有直角∠MPN,使直角顶点P与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM,PN分别交AB,BC于E,F两点,连接EF交OB于点G,则下列结论:(1)EF=OE;(2)S四边形OEBF∶S正方形ABCD=1∶4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG·BD=AE2+CF2,其中正确的是__.
如图,在平行四边形中, , , 和的平分线交于点,则的长为( )
A. B. C. D.
如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?
如图,点C到直线AB的距离是指哪条线段长( )
A. CB B. CD C. CA D. DE
如图,一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.