题目内容

如图,PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于C、D,交AB于E,AF为⊙O的直径,有下列结论:
①∠ABP=∠AOP;②数学公式=数学公式;③AC平分∠PAB;④2BE2=PE•BF,
其中结论正确的有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
D
分析:首先连接OB,根据切线长定理得PA=PB,∠APO=∠BPO;易证得△APO≌△BPO,得∠AOP=∠BOP,即=;再根据这些基础条件进行判断.
解答:解:连接OB;
∵PA、PB都是⊙O的切线,
∴PA=PB,∠APO=∠BPO;
又PO=OP,
∴△APO≌△BPO,
∴∠AOP=∠BOP,
=
①∵PB切⊙O于点B,
∴∠PBA=∠AFB,
=,得∠AFB=∠AOP,
∴∠PBA=∠AOP;
故①正确;
②∵∠AOC=∠BOC=∠FOD,
==
故②正确;
③同①,可得∠PAB=∠AOC;
=
∴∠AOC=∠BOC,
∴∠EAC=∠BOC=∠AOC,
∴∠EAC=∠PAB,
∴AC平分∠PAB;故③正确;
④在△PEB和△ABF中,

∴△PEB∽△ABF,
∴BE:PE=BF:AB=BF:2BE,即2BE2=PE•BF,
故④正确;
综上所述,正确的结论共有4个;
故选D.
点评:此题主要考查的是切线的性质,涉及的知识点有:圆周角定理,全等三角形的判断和性质,切线长定理,圆心角、弧、弦的关系等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网