题目内容
设函数与的图象的交点坐标为,则的值是 .
已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为( )
A. 1 B. 3 C. ﹣5 D. ﹣9
如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则= .
如图1,点、、、分别在矩形的边、、、上,.
求证:.(表示面积)
实验探究:
某数学实验小组发现:若图1中,点在上移动时,上述结论会发生变化,分别过点、作边的平行线,再分别过点、作边的平行线,四条平行线分别相交于点、、、,得到矩形.
如图2,当时,若将点向点靠近(),经过探索,发现:
.
如图3,当时,若将点向点靠近(,请探索、与之间的数量关系,并说明理由.
迁移应用:
请直接应用“实验探究”中发现的结论解答下列问题.
(1)如图4,点、、、分别是面积为25的正方形各边上的点,已知,,,,求的长.
(2)如图5,在矩形中,,,点、分别在边、上,,,点、分别是边、上的动点,且,连接、,请直接写出四边形面积的最大值.
某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为分().校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.
根据以上信息解答下列问题:
(1)统计表中的值为 ;样本成绩的中位数落在分数段 中;
(2)补全频数分布直方图;
(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?
计算 .
计算的结果是( )
A. B. C. D.
如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A= 度.
如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.
(1)求该抛物线的函数关系式与C点坐标;
(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?
(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);
i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;
ii:试求出此旋转过程中,(NA+NB)的最小值.