题目内容
若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为________度.
90
分析:一个三角形的三边符合a2+b2=c2,根据勾股定理的逆定理,这个三角形是直角三角形,依此可得这个三角形中最大的角的度数.
解答:设三角形的三边分别为5x,12x,13x,则
(5x)2+(12x)2=(13x)2,
根据勾股定理的逆定理,这个三角形是直角三角形.
则这个三角形中最大的角为90度.
故答案为:90.
点评:考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
分析:一个三角形的三边符合a2+b2=c2,根据勾股定理的逆定理,这个三角形是直角三角形,依此可得这个三角形中最大的角的度数.
解答:设三角形的三边分别为5x,12x,13x,则
(5x)2+(12x)2=(13x)2,
根据勾股定理的逆定理,这个三角形是直角三角形.
则这个三角形中最大的角为90度.
故答案为:90.
点评:考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
练习册系列答案
相关题目