题目内容
-6+4-2;
-4
如图,抛物线与双曲线相交于点A、B,且抛物线经过坐标原点,点A的坐标为(-2,2),点B在第四象限内.过点B用直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴距离的4倍,记抛物线顶点为E.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC与△ABE的面积;
(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍,若存在,请求出点D的坐标;若不存在,请说明理由.
已知抛物线与x轴没有交点.
(1)求c的取值范围;
(2)试确定直线y=cx+l经过的象限,并说明理由.
计算:
有理数a、b,c在数轴上对应点位置如下图所示,则下列关系式成立的是
A.a+b+c<0 B.a+b+c>0 C.ab<ac D.ac>ab
小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有 ▲ 个.
已知a与b互为相反数,c与d互为倒数,求的值.
如图,AB是⊙O的直径,点在⊙O上,若,则的度数是 ( )
A. B. C. D.
小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了( )
A.32元 B.36元 C.38元 D.44元