题目内容
已知y=ax2-2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是________.
第一象限
分析:根据抛物线y=ax2-2x+1与x轴没有交点,得出△=4-4a<0,a>1,再根据b=-2,得出抛物线的对称轴在y轴的右侧,即可求出答案.
解答:∵抛物线y=ax2-2x+1与x轴没有交点,
∴△=4-4a<0,
解得:a>1,
∴抛物线的开口向上,
又∵b=-2,
∴-
>0,
∴抛物线的对称轴在y轴的右侧,
∴抛物线的顶点在第一象限.
故答案是:第一象限.
点评:此题考查了二次函数的图象与x轴交点,关键是根据二次函数的图象与x轴交点的个数与一元二次方程的解之间的联系求出a的值,这些性质和规律要求掌握.
分析:根据抛物线y=ax2-2x+1与x轴没有交点,得出△=4-4a<0,a>1,再根据b=-2,得出抛物线的对称轴在y轴的右侧,即可求出答案.
解答:∵抛物线y=ax2-2x+1与x轴没有交点,
∴△=4-4a<0,
解得:a>1,
∴抛物线的开口向上,
又∵b=-2,
∴-
∴抛物线的对称轴在y轴的右侧,
∴抛物线的顶点在第一象限.
故答案是:第一象限.
点评:此题考查了二次函数的图象与x轴交点,关键是根据二次函数的图象与x轴交点的个数与一元二次方程的解之间的联系求出a的值,这些性质和规律要求掌握.
练习册系列答案
相关题目
已知一次函数y1=2x,二次函数y2=x2+1.
(Ⅰ)根据表中给出的x的值,计算对应的函数值y1、y2,并填在表格中:
(Ⅱ)观察第(Ⅰ)问表中有关的数据,证明如下结论:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≤y2均成立;
(Ⅲ)试问,是否存在二次函数y3=ax2+bx+c,其图象经过点(-5,2),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≤y3≤y2均成立?若存在,求出函数y3的解析式;若不存在,请说明理由.
(Ⅰ)根据表中给出的x的值,计算对应的函数值y1、y2,并填在表格中:
| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| y1=2x | |||||||
| y2=x2+1 |
(Ⅲ)试问,是否存在二次函数y3=ax2+bx+c,其图象经过点(-5,2),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≤y3≤y2均成立?若存在,求出函数y3的解析式;若不存在,请说明理由.