题目内容

4.如图,直线AB、CD相交于点O,OE⊥AB,OF⊥CD.
(1)写出图中∠AOF的余角∠AOC、∠FOE、∠BOD;
(2)如果∠EOF=$\frac{1}{5}$∠AOD,求∠EOF的度数.

分析 (1)由垂直的定义可知∠AOF+∠COA=90°,∠AOF+∠FOE=90°,从而可知∠COA与∠FOE是∠AOF的余角,由对顶角的性质从而的得到∠BOD是∠AOF的余角;
(2)依据同角的余角相等可知∠FOE=∠DOB,∠EOF=$\frac{1}{5}$∠AOD,从而得到∠EOF=$\frac{1}{6}$平角.

解答 解:(1)∵OE⊥AB,OF⊥CD,
∴∠AOF+∠COA=90°,∠AOF+∠FOE=90°.
∴∠COA与∠FOE是∠AOF的余角.
∵由对顶角相等可知:∠AOC=∠BOD,
∴∠BOD+∠AOF=90°.
∴∠BOD与∠APF互为余角.
∴∠AOF的余角为∠AOC,∠FOE,∠BOD;
故答案为:∠AOC、∠FOE、∠BOD.
(2)解:∵∠AOC=∠EOF,∠AOC+∠AOD=180°,∠EOF=$\frac{1}{5}$∠AOD,
∴6∠AOC=180°.
∴∠EOF=∠AOC=30°.

点评 本题主要考查的是垂线、余角的定义、对顶角、邻补角的定义,掌握相关性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网