题目内容

试证:8x2-2xy-3y2可化为具有整系数的两个多项式的平方差.
证明:8x2-2xy-3y2=(2x+y)(4x-3y),
设8x2-2xy-3y2=(A+B)(A-B)(其中A、B为具有整系数的两个多项式),
即A+B=2x+y,A-B=4x-3y,
解之得:A=3x-y,B=-x+2y,
∴8x2-2xy-3y2=(3x-y)2-(x-y)2
∴8x2-2xy-3y2可化为具有整系数的两个多项式的平方差.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网