ÌâÄ¿ÄÚÈÝ
19£®ÏÂÁи÷ʽ$\frac{a}{¦Ð}$¡¢$\frac{x}{x+1}$¡¢$\frac{1}{5}$£¨x+y£©¡¢$\frac{{a}^{2}-{b}^{2}}{a-b}$¡¢-3x2¡¢0¡¢$\sqrt{a}$ÖУ¬ÊÇ·ÖʽµÄÓÐ$\frac{x}{x+1}$¡¢$\frac{{a}^{2}-{b}^{2}}{a-b}$£¬ÊÇÕûʽµÄÓÐ$\frac{a}{¦Ð}$¡¢$\frac{1}{5}$£¨x+y£©¡¢-3x2¡¢0£®·ÖÎö ÅжϷÖʽµÄÒÀ¾ÝÊÇ¿´·ÖĸÖÐÊÇ·ñº¬ÓÐ×Öĸ£¬Èç¹ûº¬ÓÐ×ÖĸÔòÊÇ·Öʽ£¬Èç¹û²»º¬ÓÐ×ÖĸÔò²»ÊÇ·Öʽ£®
½â´ð ½â£º$\frac{a}{¦Ð}$¡¢$\frac{1}{5}$£¨x+y£©¡¢-3x2¡¢0µÄ·ÖĸÖоù²»º¬ÓÐ×Öĸ£¬Òò´ËËüÃÇÊÇÕûʽ£¬¶ø²»ÊÇ·Öʽ£®
$\frac{x}{x+1}$¡¢$\frac{{a}^{2}-{b}^{2}}{a-b}$·ÖĸÖк¬ÓÐ×Öĸ£¬Òò´ËÊÇ·Öʽ£®
¹Ê´ð°¸ÊÇ£º$\frac{x}{x+1}$¡¢$\frac{{a}^{2}-{b}^{2}}{a-b}$£»$\frac{a}{¦Ð}$¡¢$\frac{1}{5}$£¨x+y£©¡¢-3x2¡¢0£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é·ÖʽµÄ¶¨Ò壬עÒâ¦Ð²»ÊÇ×Öĸ£¬Êdz£Êý£¬ËùÒÔ$\frac{a}{¦Ð}$²»ÊÇ·Öʽ£¬ÊÇÕûʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®2015Äê´ºÔËÆÚ¼ä£¬È«¹úÓÐ23.2ÒÚÈ˴νøÐж«Î÷Äϱ±´óÁ÷¶¯£¬ÓÿÆÑ§¼ÇÊý·¨±íʾ23.2ÒÚÊÇ£¨¡¡¡¡£©
| A£® | 23.2¡Á108 | B£® | 2.32¡Á109 | C£® | 232¡Á107 | D£® | 2.32¡Á108 |
14£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | a0=1 | B£® | x2¡Âx3=$\frac{1}{x}$ | C£® | £¨-$\frac{x}{y}$£©2=-$\frac{{x}^{2}}{y}$ | D£® | a4¡Â2-1=$\frac{1}{2}$a4 |
8£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | a2+a3=a5 | B£® | £¨a3£©2=a5 | C£® | £¨a+3£©2=a2+9 | D£® | -2a2•a=-2a3 |