题目内容
如图,直线AB与⊙O相切于点A,AC,CD是⊙O两条弦,且CD∥AB,半径为2.5,CD=4,则弦AC长为_____.
如图,在直角坐标系中,矩形OABC的顶点O是坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是( )
A. (3,2) B. (-2,-3)
C. (2,3)或(-2,-3) D. (3,2)或(-3,-2)
如图,AB是⊙O的直径,O是圆心,BC与⊙O相切于点B,CD交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______。
如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为,求点M的坐标.
先化简,再求值: ÷(a-1-)其中a是方程x2+2x=8的一个根.
如图,矩形ABCD中,AD=2AB,E、F、G、H分别是AB,BC,CD,AD边上的点,EG⊥FH,FH=2,则四边形EFGH的面积为( )
A. 6 B. 12 C. 12 D. 24
下列运算正确的是( )
A. 5a2+3a2=8a4 B. a3•a4=a12 C. (a+2b)2=a2+4b2 D. -=﹣5
如图,在?ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为( )
A. 8 B. 9.5 C. 10 D. 11.5
某地政府计划为农户购买农机设备提供补贴.其中购买Ⅰ型、Ⅱ型设备农民所投资的金额与政府补贴的额度存在下表所示的函数对应关系.
(1)分别求y1和y2的函数解析式;
(2)有一农户共投资10万元购买Ⅰ型、Ⅱ型两种设备,两种设备的投资均为整数万元,要想获得最大补贴金额,应该如何购买?能获得的最大补贴金额为多少?