题目内容
如图,△ADC是等边三角形,B是DC边中点,E在AC延长线上,且CE=BC,请判断△ABE的形状并证明你的结论.
解:∵B是DC边中点,
∴AB是等边三角形ADC的顶角平分线,
∴∠BAC=30°.
∵CB=CE,
∴∠CBE=∠CEB,
∵∠ACD=60°,
∴∠E=30°,
∴∠E=∠BAE,
∴△ABE为等腰三角形.
∴AB是等边三角形ADC的顶角平分线,
∴∠BAC=30°.
∵CB=CE,
∴∠CBE=∠CEB,
∵∠ACD=60°,
∴∠E=30°,
∴∠E=∠BAE,
∴△ABE为等腰三角形.
练习册系列答案
相关题目