题目内容
如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是 .
有个零件如图所示,现已知∠A=10°,∠B=75°,∠C=15°,则∠ADC= .
(本小题满分10分) 如图,在△ABC中,,,边长为1的正方形的一个顶点D在边AC上,与△ABC另两边分别交于点E、F,DE∥AB,将正方形平移,使点D保持在AC上(D不与A重合),设,正方形与△ABC重叠部分的面积为.
(1)求与的函数关系式并写出自变量的取值范围;
(2)为何值时的值最大?
(3)在哪个范围取值时的值随的增大而减小?
抛物线经过平移得到抛物线,平移方法是( )
A.向左平移1个单位,再向下平移2个单位
B.向左平移1个单位,再向上平移2个单位
C.向右平移1个单位,再向下平移2个单位
D.向右平移1个单位,再向上平移2个单位
已知,如图:△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,连接AD、BD,过D作DH⊥AB,垂足为H,交AC于E.
(1)若△ABD是等边三角形,求DE的长;
(2)若BD=AB,且tan∠HDB=,求DE的长.
如图,在等边△ABC中,D为BC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为 _________ .
如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )
A.(3,3) B.(4,3) C.(3,1) D.(4,1)
如图,已知四边形OABC为正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是( )
A.6 B.8 C. D.
因式分解:
(1)
(2)