题目内容
与1+最接近的整数是( )
A. 4 B. 3 C. 2 D. 1
某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.
(参考数据: =1.1, =1.2, =1.3, =1.4)
【答案】(1)10%(2)不能达到.
【解析】试题分析:(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2900(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解;(2)利用(1)中求得的增长率来求2018年该地区将投入教育经费.
试题解析:(1)设增长率为x,根据题意2015年为2900(1+x)万元,2016年为2900(1+x)2万元.
则2900(1+x)2=3509, 解得x=0.1=10%,或x=﹣2.1(不合题意舍去).
答:这两年投入教育经费的平均增长率为10%.
(2)2018年该地区投入的教育经费是3509×(1+10%)2=4245.89(万元). 4245.89<4250,
答:按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费不能达到4250万元.
考点:一元二次方程的应用
【题型】解答题【结束】25
如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.
(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.
已知一元二次方程的两根, ,则_______.
如图,有一块长为32 m、宽为24 m的长方形草坪,其中有两条直道将草坪分为四块,则分成的四块草坪的总面积是________m2.
如图,把一张长方形纸条沿折叠,若,则=_________
如图,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD的度数.
如图,将长方形纸片ABCD沿BD折叠,得到△BDC1,C1D 与AB交于点E,若∠1 = 35°,则∠2的度数是_________.
已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN交矩形对角线 AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上.
(1)如图1,当EP⊥BC时,求CN的长;
(2) 如图2,当EP⊥AC时,求AM的长;
(3) 请写出线段CP的长的取值范围,及当CP的长最大时MN的长.
已知方程有两个不相等的实数根,则的取值范围是________.