题目内容
(本小题满分8分)
如图,已知在⊙O中,AB=4
,AC是⊙O的直径,AC⊥BD于F,∠A=30°.

(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.(3) 试判断⊙O中其余部分能否给(2)中的圆锥做两个底面。
如图,已知在⊙O中,AB=4
(1)求图中阴影部分的面积;
|
解:(1)法一:过O作OE⊥AB于E,则AE=
AB=2
.····················· 1分
在Rt
AEO中,∠BAC=30°,cos30°=
.
∴OA=
=
=4. …………………………2分
又∵OA=OB,∴∠ABO=30°.∴∠BOC=60°.∵AC⊥BD,∴
.
∴∠COD =∠BOC=60°.∴∠BOD=120°.······················································· 3分
∴S阴影=
=
.································································· 4分
法二:连结AD.∵AC⊥BD,AC是直径,

∴AC垂直平分BD. ……………………1分∴AB=AD,BF=FD,
. ∴∠BAD=2∠BAC=60°,
∴∠BOD=120°. ……………………2分
∵BF=
AB=2
,sin60°=
,AF=AB·sin60°=4
×
=6.
∴OB2=BF2+OF2.即
.∴OB=4. ···························· 3分
∴S阴影=
S圆=
. ········································································ 4分
法三:连结BC.∵AC为⊙O的直径,∴∠ABC=90°.……………………1分

∵AB=4
,∴
. ……………………2分
∵∠A=30°, AC⊥BD,∴∠BOC=60°,∴∠BOD=120°.
∴S阴影=
π·OA2=
×42·π=
.……………………4分
以下同法一.
(2)设圆锥的底面圆的半径为r,则周长为2πr,
∴
. ∴
. ···················································· 6分
(3)
<8
-12,故能得到两个这样的底面。……………………8分
在Rt
∴OA=
又∵OA=OB,∴∠ABO=30°.∴∠BOC=60°.∵AC⊥BD,∴
∴∠COD =∠BOC=60°.∴∠BOD=120°.······················································· 3分
∴S阴影=
法二:连结AD.∵AC⊥BD,AC是直径,
|
∴∠BOD=120°. ……………………2分
∵BF=
∴OB2=BF2+OF2.即
∴S阴影=
法三:连结BC.∵AC为⊙O的直径,∴∠ABC=90°.……………………1分
∵AB=4
∵∠A=30°, AC⊥BD,∴∠BOC=60°,∴∠BOD=120°.
∴S阴影=
以下同法一.
(2)设圆锥的底面圆的半径为r,则周长为2πr,
∴
(3)
略
练习册系列答案
相关题目