题目内容
已知(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1____y2.(填“>”“=”或“<”)
2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负 责校园足球工作.2018 年 2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总 结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到 2020 年 要达到 85000 块.其中 85000 用科学记数法可表示为( )
A. 0.85 ? 105 B. 8.5 ? 104 C. 85 ? 10-3 D. 8.5 ? 10-4
已知函数为常数),当<时,随的增大而减小,则的取值范为______.
如图所示,某人在山坡坡脚A处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P处再测得C的仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O、A、B在同一条直线上,求电视塔OC的高度以及此人所在位置点P的垂直高度.(测倾器的高度忽略不计,结果保留根号)
如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为 .
现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是( )
A. 6.3(1+2x)=8 B. 6.3(1+x)=8
C. 6.3(1+x)2=8 D. 6.3+6.3(1+x)+6.3(1+x)2=8
某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为____,图①中m的值是____;
(2)求本次你调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
【答案】(1)50,32;(2)平均数是16,众数是10元,中位数是15元; (3) 928人.
【解析】分析:(1)由捐5元的4人占调查人数的8%求调查的总人数;捐10元的人数除以调查的总人数可求m;(2)根据平均数,众数,中位数的定义求解;(3)用调查人数中捐10元的百分比乘以本校人数.
详【解析】(1)本次接受随机抽样调查的学生人数为4÷8%=50(人);
因为×100%=32%,所以m=32.
故答案为50,32;
(2)平均数是(4×5+16×10+12×15+10×20+8×30)=16(元),
众数是10元,中位数是15元.
(3)该校本次活动捐款金额为10元的学生人数是2900×32%=928(人)
点睛:求中位数时,首先要先排序,如果数据个数是奇数,按从小到大的顺序,取中间的那个数;如果数据个数是偶数,按从小到大的顺序,取中间两个数的平均数;众数是出现次数最多的数据.
【题型】解答题【结束】24
某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.
(参考数据: =1.1, =1.2, =1.3, =1.4)
施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是( )
A. B.
C. D.
在平面直角坐标系中,将点A(x,y))向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点的坐标是__________.