题目内容

将一个均匀的正方体骰子六个面上标有数字1,2,3,4,5,6,连续抛掷两次骰子,朝上的数字分别m、n,若把m、n作为点p的横、纵坐标,则点P(m,n)落在反比例函数数学公式图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是________.


分析:首先根据题意列出表格,然后由表格求得所有等可能的结果与点P(m,n)落在反比例函数图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的情况,再利用概率公式求得答案.
解答:列表得:
第一次
第二次
123456
1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)
2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)
3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)
4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)
5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)
6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)
∵共有36种等可能的结果,点P(m,n)落在反比例函数图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的有:(1,1),(1,2),(1,3),(2,1),(3,1),
∴点P(m,n)落在反比例函数图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是:
故答案为:
点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网