题目内容

如图,AD是⊙O的内接△ABC的高,AE是⊙O的直径,求证:AB•AC=AD•AE.
分析:首先连接BE,由AD是⊙O的内接△ABC的高,AE是⊙O的直径,可得∠ABE=∠ADC=90°,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,可得∠E=∠C,即可证得△ABE∽△ADC,然后由相似三角形的对应边成比例,证得AB•AC=AD•AE.
解答:证明:连接BE,
∵AD是⊙O的内接△ABC的高,AE是⊙O的直径,
∴∠ABE=∠ADC=90°,
∵∠E=∠C,
∴△ABE∽△ADC,
∴AB:AD=AE:AC,
∴AB•AC=AD•AE.
点评:此题考查了相似三角形的判定与性质以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网