题目内容
如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A.15° B.20° C.25° D.30°
如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2,求⊙O的半径.
已知在RtΔABC中,∠C=90°,sinA=,则tanB的值为( )
A. B. C. D.
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是 .(写出所有正确结论的序号)
①b>0
②a-b+c<0
③阴影部分的面积为4
④若c=-1,则b2=4a.
如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是( )
先化简,再求值:,其中x=.
不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .
如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
(1)求该抛物线的解析式;
(2)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标;
(3)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标.
已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于( )
A.12πcm2 B.15πcm2 C.24πcm2 D.30πcm2