题目内容
若第二象限内的点P(x,y)满足,,则点P的坐标是________.
把代数式分解因式,结果正确的是( )
A. B. C. D.
(本小题满分7分)计算:.
(12分)如图,已知抛物线()与x轴相交干点A、B.与y轴相交于点C,且点A在点B的左侧.
(1)若抛物经过点C(2,2),求实数m的值;
(2)在(1)的条件下,解答下列问题:
①求出△ABC的面积;
②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;
(3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在.请说明理由.
(7分)先化简:,然后解答下列问题:
(1)当时,求原代数式的值;
(2)原代数式的值能等于吗?为什么?
下列说法正确的是( )
A.为了解我国中学生的体能情况应采用普查的方式
B.若甲队成绩的方差是2.乙队成绩的方差是3.说明甲队成绩比乙队成绩稳定
C.明天下雨的概率是99%,说明明天一定会下雨
D.一组数据4,6,7,6,6,7,8,9的中位数和众数都是6
(14分)如图,在Rt△ABC中,∠ACB=900,AC=6,BC=8.动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动.过线段MN的中点G作边AB的垂线,垂足为点G,交△ABC的另一边于点P,连接PM、PN,当点N运动到点A时,M、N两点同时停止运动,设运动时间为t秒.
(1)当t= 秒时,动点M、N相遇;
(2)设△PMN的面积为S,求S与t之间的函数关系式;
(3)取线段PM的中点K,连接KA、KC,在整个运动过程中,△KAC的面积是否变化?若变化,直接写出它的最大值和最小值;若不变化,请说明理由.
(3分)某种产品共有10件,其中有1件是次品,现从中任意抽取1件,恰好抽到次品的概率是 .
在矩形中,已知,在边上取点,使,连结,过点作,与边或其延长线交于点.
猜想:如图①,当点在边上时,线段与的大小关系为 .
探究:如图②,当点在边的延长线上时,与边交于点.判断线段与的大小关系,并加以证明.
应用:如图②,若利用探究得到的结论,求线段的长.