题目内容
将抛物线y=﹣2x2+1向右平移1个单位,再向下平移3个单位后所得到的抛物线为( )
A.y=﹣2(x+1)2﹣2 B.y=﹣2(x+1)2﹣4 C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x﹣1)2﹣4
C【考点】二次函数图象与几何变换.
【专题】数形结合.
【分析】先确定抛物线的顶点坐标为(0,1),根据点平移的规律,点(0,1)向右平移1个单位,再向下平移3个单位得到对应点的坐标为(1,﹣2),然后根据顶点式写出平移后抛物线的解析式.
【解答】解:抛物线y=﹣2x2+1的顶点坐标为(0,1),点(0,1)向右平移1个单位,再向下平移3个单位后所得对应点的坐标为(1,﹣2),所以平移
后的抛物线解析式为y=﹣2(x﹣1)2﹣2.
故选C.
【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
练习册系列答案
相关题目
二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中的x与y的部分对应值如下表:
| x | … | 0 | 1 | 2 | … |
| y | … | 4 | ﹣4 | 6 | … |
(1)ac<0;(2)当x>1时,y的值随x值得增大而增大;(3)﹣1是方程ax2+bx+c=0的一个根;(4)当﹣1<x<2时,ax2+bx+c<0,其中正确的个数为( )
A.4个 B.3个 C.2个 D.1个