题目内容

如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=________度.

50
分析:根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
解答:∵DE垂直平分AC,∠A=30°,
∴AE=CE,∠ACE=∠A=30°,
∵∠ACB=80°,
∴∠BCE=80°-30°=50°.
点评:此题主要考查线段的垂直平分线的性质等几何知识.
①线段的垂直平分线上的点到线段的两个端点的距离相等;
②得到等腰三角形,再利用等腰三角形的知识解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网