题目内容


在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=__________


3

【考点】角平分线的性质;勾股定理.

【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.

【解答】解:如图,过点D作DE⊥AB于E,

∵∠C=90°,AC=6,BC=8,

∴AB===10,

∵AD平分∠CAB,

∴CD=DE,

∴SABC=AC•CD+AB•DE=AC•BC,

×6•CD+×10•CD=×6×8,

解得CD=3.

故答案为:3.

【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网