题目内容
平行四边形、矩形、菱形、正方形都具有的是( )
A. 对角线互相平分
B. 对角线互相垂直
C. 对角线相等
D. 对角线互相垂直且相等
如图(1),抛物线与x轴交于A、B两点,与y轴交于点C(0,).[图(2)为解答备用图]
(1)__________,点A的坐标为___________,点B的坐标为__________;
(2)设抛物线的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
如图,下列能判定AB∥EF的条件有( )
①∠B+∠BFE=180°
②∠1=∠2
③∠3=∠4
④∠B=∠5.
A. 1个 B. 2个 C. 3个 D. 4个
如图,正方形ABCD的面积为5,正方形BEFG面积为4,那么△GCE的面积是________.
如图,在正方形ABCD中,以AB为边在正方形内作等边△ABE,连接DE,CE,则∠CED的度数为__________.
如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是( )
A.矩形 B.菱形 C.正方形 D.等腰梯形
如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )
A. AB=CD B. AD=BC C. AB=BC D. AC=BD
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
已知﹣2xm﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是_____.